Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase.
نویسندگان
چکیده
Terminal Schwann cells (TSCs) are key components of the mammalian neuromuscular junction (NMJ). How the TSCs sense the synaptic activity in physiological conditions remains unclear. We have taken advantage of the distinct localization of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at the NMJ to bring out the function of different ACh receptors (AChRs). AChE is clustered by the collagen Q in the synaptic cleft and prevents the repetitive activation of muscle nicotinic AChRs. We found that BChE is anchored at the TSC by a proline-rich membrane anchor, the small transmembrane protein anchor of brain AChE. When BChE was specifically inhibited, ACh release was significant depressed through the activation of α7 nAChRs localized on the TSC and activated by the spillover of ACh. When both AChE and BChE were inhibited, the spillover increased and induced a dramatic reduction of ACh release that compromised the muscle twitch triggered by the nerve stimulation. α7 nAChRs at the TSC may act as a sensor for spillover of ACh adjusted by BChE and may represent an extrasynaptic sensor for homeostasis at the NMJ. In myasthenic rats, selective inhibition of AChE is more effective in rescuing muscle function than the simultaneous inhibition of AChE and BChE because the concomitant inhibition of BChE counteracts the positive action of AChE inhibition. These results show that inhibition of BChE should be avoided during the treatment of myasthenia and the pharmacological reversal of residual curarization after anesthesia.
منابع مشابه
Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios.
Nicotinic acetylcholine receptors are some of the most studied synaptic proteins; however, many questions remain that can only be answered using single molecule approaches. Here we report our results from single α7 and neuromuscular junction type nicotinic acetylcholine receptors in mammalian cell membranes. By labeling the receptors with fluorophore-labeled bungarotoxin, we can image individua...
متن کاملNeurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction.
We examined the effects of motor-nerve stimulation on the intracellular Ca2+ levels of Schwann cells, the glial cells at the frog neuromuscular junction. Schwann cells, which were loaded with the fluorescent Ca2+ indicator fluo-3 and examined by confocal microscopy, showed a transient increase in free Ca2+ within a few seconds of the onset of tetanic stimulation of the motor nerve. The Ca2+ res...
متن کاملMolecular characterization of off-target activities of telithromycin: a potential role for nicotinic acetylcholine receptors.
Adverse effects have limited the clinical use of telithromycin. Preferential inhibition of the nicotinic acetylcholine receptors (nAChR) at the neuromuscular junction (α3β2 and NMJ), the ciliary ganglion of the eye (α3β4 and α7), and the vagus nerve innervating the liver (α7) could account for the exacerbation of myasthenia gravis, the visual disturbance, and the liver failure seen with telithr...
متن کاملα7-Containing and non-α7-containing nicotinic receptors respond differently to spillover of acetylcholine.
We explored whether nicotinic acetylcholine receptors (nAChRs) might participate in paracrine transmission by asking if they respond to spillover of ACh at a model synapse in the chick ciliary ganglion, where ACh activates diffusely distributed α7- and α3-containing nAChRs (α7-nAChRs and α3*-nAChRs). Elevating quantal content lengthened EPSC decay time and prolonged both the fast (α7-nAChR-medi...
متن کاملLong-term Low-Intensity Endurance Exercise along with Blood-Flow Restriction Improves Muscle Mass and Neuromuscular Junction Compartments in Old Rats
Background: During the aging process, muscle atrophy and neuromuscular junction remodeling are inevitable. The present study aimed to clarify whether low-intensity aerobic exercise along with limb blood-flow restriction (BFR) could improve aging-induced muscle atrophy and nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction.Methods: Forty-eight male Wistar rats, aged 23–24 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 36 شماره
صفحات -
تاریخ انتشار 2014